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A model of sequential resonant tunneling transport among two-dimensional subbands that takes into account
explicitly elastic scattering is investigated. It is compared to transport measurements performed on quantum
cascade lasers, where resonant tunneling processes are known to be dominating. Excellent agreement is found
between experiment and theory over a large range of current, temperature, and device structures.
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I. INTRODUCTION

Resonant tunneling in semiconductor heterostructures has
motivated many experimental and theoretical studies. One of
the most studied cases is the resonant tunneling diode, where
a quantum well is formed by a double-barrier region.1 Under
a variable applied electric field, the transparency of the sys-
tem is probed by coherent tunneling of electrons at the Fermi
energy of the contact region.2,3 The voltage-current curve
exhibits a clear maximum when the emitter electrode aligns
with a resonance of the well. This perfect case might be
realized when the exit barrier is made so thin that the escape
tunneling rate is much faster than other dephasing mecha-
nisms. Because of strong in-plane scattering this condition is
difficult to achieve. Usually current proceeds by sequential
tunneling as it is the case in quantum cascade lasers.

In the pioneer work of Kazarinov, the current is expressed
in a density matrix model, where the resonance curve is
found Lorentzian with a homogeneous broadening given by
the average value of elastic scattering matrix elements. Be-
cause of the averaging the electrons tunnel between sub-
bands, conserving their in-plane wave vectors. More recently
a refined model that includes previously averaged-out
second-order mechanisms was developed.4 Second-order
scattering is known to yield gain without a net population
inversion5 through scattering assisted optical transitions, but
it also affects more generally resonant tunneling by allowing
transitions between subband states of different wave
vectors.4 It is found that resonant tunneling occurs with con-
servation of the energy rather than the wave vector, contrar-
ily to the first-order case.6

In this paper we demonstrate the important role played by
the second-order formulation of the current in sequential
resonant tunneling and, therefore, in the carrier transport of
semiconductor heterostructures.

II. SECOND-ORDER CURRENT

When second-order terms are considered in the calcula-
tion, the current density between a pair of subbands coupled
through a barrier is expressed as4,6
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2 , �=1 /kT with k the Boltzmann constant,
and ni is the net population of subband i.

The current density is no more driven by the population
difference n2−n1 but by an effective population term. We
want to examine two extreme cases: equally populated sub-
bands n2=n1=n and one empty subband n1=0. The first case
is shown in Fig. 1�a�. The current density is dispersive
shaped around the resonance. A negative current peak occurs
when the detuning is negative; this is when the edge of sub-
band 1 is above the edge of subband 2. When the subbands
are aligned the current is zero, and the first-order approxima-
tion is recovered. The current then turns to be positive after
the edge of subband 2 has overcome the edge of subband 1;
this is when the detuning is positive. The dispersive shape is
the consequence of electron tunneling at a constant energy
rather than at a constant wave vector. As shown in Fig. 1�a�
the first-order model yield a zero current for any detuning.
This case illustrates a superlattice: the current is zero until
second-order scattering terms have been taken into account.

The case where one subband is empty is shown in Fig.
1�b�. For negative detunings the current between the sub-
bands is exponentially reduced as only the electrons with a
sufficient kinetic energy are able to tunnel to subband 1.
Contrarily, for positive detunings, the first- and second-order
curves overlap perfectly as all electrons are above the edge
of subband 1.

Generally the first-order model is recovered as the thermal
energy largely overcomes the detuning energy kT	����, as
it is the case in Ref. 7. In Eq. �2�, the exponential cutoff
tends to one as the temperature tends to infinity, spreading
electrons in a uniform distribution.
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III. QUANTUM CASCADE LASERS

As second-order mechanisms strongly affect the resonant
current between a pair of subbands, we aim to show its im-
pact on more complex semiconductor heterostructures such
as quantum cascade lasers.8 We, therefore, have implemented
second-order effects in the computation of the voltage-
current characteristic.

The computational model is based on the density matrix,
where dissipation is included as rate equations for the popu-
lations and as dephasing times for the polarizations. The pre-
cise implementation will be detailed somewhere else.9 A
typical quantum cascade laser is a repetition of a fundamen-
tal period as shown in Fig. 2. These periods are coupled
through an injection barrier. Electrons are injected by se-
quential resonant tunneling from a period to the next one.
The period itself can be separated in an active region, where
the laser transition occurs, and an injector region, where car-
riers are relaxed before they are injected into the next period.
For many structures and the ones presented here, the active

region is coupled to the injector region through an extraction
barrier as shown in Fig. 2. We, therefore, have implemented
tight-binding and sequential resonant tunneling at the injec-
tion and at the extraction barrier. In the active region and the
injection region, the carriers are relaxed through intersub-
band scattering. The mechanisms we have considered10,11 in-
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FIG. 1. �Color online� �a� Effects of second-order contributions
on tunneling between a pair of equally populated subbands. �A�
When the detuning is negative, the subband edge of subband 1 is
above the edge of subband 2. As tunneling conserves energy, the
current flow from 1 to 2 is greater than the current flow from 2 to 1,
yielding a negative net current. �B� When the subbands are aligned,
the detuning is zero and both contributions cancel, yielding a zero
net current. �C� The detuning is positive and, therefore, the edge of
subband 2 is above the edge of subband 1, yielding a positive net
current between subbands. �b� Empty subband 1. �A� The current is
reduced as only a fraction of electrons can tunnel. �B� Models over-
lap perfectly.
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FIG. 2. �Color online� Each structure is shown at injection reso-
nance field. The layer sequence starts from the injection barrier, and
the thicknesses are in nm; roman and bold numbers indicate
In0.53Ga0.47As and Al0.48In0.52As alloy, respectively, acting as well,
resp. barrier material. �a� Layers: 4.3/1.7/0.9/5.4/1.1/5.3/1.2/4.7/2.2/
4.3/1.5/3.8/1.6/3.4/1.8/3.0/2.1/2.8/2 .5/2.7/3.2/2.7/3.6/2.5. Under-
lined layers are 1.5
1017 cm−3 Si doped. Nominal sheet carrier
density is 1.2
1011 cm−2. Period length is 68.3 nm, repeated
35 times. The optical transition occurs at �154 meV. �b� Layers:
4.8/3.6/0.2/3.6/3.5/5.1/1.1/5.0/1.2/4.5/1.3/3.5/1.5/3.4/1 .6/3.3/1 .8/
3.2/2.1/3.0/2.5/3.0/2.9/2.9. Underlined layers are 3
1017 cm−3 Si
doped. Nominal sheet carrier density is 3.03
1011 cm−2. Period
length is 68.6 nm, repeated 35 times. The optical transition occurs
at �167 meV.
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clude LO phonons, interface roughness, and ionized impuri-
ties �dopants� scattering. Nonparabolicity effects and self-
consistency of the potential are accounted by the model. A
uniform electronic temperature is computed for all subbands,
based on the electron energy balance.12 The numerical simu-
lations output the populations of the subbands and the cur-
rent density flowing through the heterostructure. We are,
therefore, able to predict the voltage-current characteristic of
a particular quantum cascade structure. In order to test the
impact of second-order transport, we have implemented both
first- and second-order sequential resonant tunneling models.

IV. RESULTS

We present two quantum cascade structures in different
coupling regimes. The first �Sample N655� shown in Fig.
2�a� has a strong coupling between the active and the injector
regions as the extraction barrier is made sufficiently thin
�22 Å�. Contrarily in Fig. 2�b� the second structure �Sample
N258� is a single quantum well as its active region is formed
by one well only, weakly coupled to the injector region by a
thick extraction barrier �30 Å�.

The current-voltage curves for both structures are shown
in Fig. 3. The measurements are taken in continuous mode
for low currents and in pulsed mode when current flow
causes a heating of the sample. The cryostat temperature for
the first sample �N655� is 300 K, while it is 80, 180, and 300
K for the second �N258�.

In Fig. 3�a� the second-order voltage-current curve fits the
experimental data much better than the first-order approxi-
mation from the very low currents to the maximal current.

If we focus on the low-field values of the voltage-current
curve, the second-order model clearly better predicts the ex-
perimental behavior than the first-order model does. In par-
ticular it yields a zero net current at zero field, which is an
important validation of the computational model.

The results for the single quantum well structure �N258�
are shown in Fig. 3�b�. We have shown simulated curves
with second-order model only because the first-order model
failed to converge at low-field value and is largely off from
the measurements. Apart from a constant process-related se-
rial resistance �0.5 �� that yields a systematically higher
experimental bias, the model was able to reproduce nicely
the experiment, in particular for high temperature where the
transport in the structure is clearly dominated by optical
phonons. The model predicts the low-temperature curve with
less accuracy because the transport at such a temperature
also require the computation of scattering rates due to acous-
tical phonons and electron-electron interactions, which are
not computed in the present model.

V. CONCLUSION

Agreement between computed and experimental current-
voltage characteristics has already been reported for other
model approaches such as based on Monte Carlo,13–15

scattering,16,17 or nonequilibrium Green’s functions;18 this
work aims to extend the comparison between theory and
experiment to a larger range of currents, temperature, and

structure design. Formally, the current driven by tunneling
between two subbands through a barrier or by optical absorp-
tion are physically equivalent because both processes con-
serve the in-plane wave vector. As a result, the striking
agreement between the predictions of the second-order
model and the experiment can be interpreted as a strong ex-
perimental evidence for the validity of the Bloch gain model.
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FIG. 3. �Color online� �a� Voltage-current characteristics; ex-
perimental data �full line�, simulation with second-order resonant
tunneling �dotted line�, simulation with first-order model �dashed
line�. The current curves are shown both in log scale �left axis� for
inspection of low currents and in linear scale �right axis� for inspec-
tion of the dynamic range. �b� Single quantum well current-voltage
curves for three temperatures: 15, 180, and 300 K. Measurements
displayed in full line. Simulation in dotted line.
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